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Abstract:  Fuzzy Logic has found nowadays many applications to almost all sectors of human activity, with fuzzy control being one of the 
most important such applications. A control system regulates the behavior of a device or another system with the help of a feedback controller. 
A fuzzy control system is a control system that analyses the input data in terms of variables which take continuous values in the interval [0, 
1]. The present article studies in detail the operation of fuzzy control systems. In the effort of presenting our results in the simplest possible 
way, so that they could be understood even by a non-expert, we have chosen a geometrical approach based on an example with a building’s 
central heating controller.  
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1. Introduction  
  There is no doubt that the enormous progress of science and 
technology owe a  lot to the Aristotle’s (384-322 BC) bivalent 
logic, which dominated for centuries the human way of 
thinking and civilization. However, even from the time of 
Buddha (around 500 BC), Heraclitus (535-475 BC) and Plato 
(427-377 BC) views have appeared too discussing the 
existence of a third area between “true” and “false”, where 
these two opposites can exist together. More recent 
philosophers like Hegel, Marx, Engels, Russel and others 
supported and cultivated further those ideas, but the first 
integrated propositions of multivalued logics appeared only 
during the 20th century by Jan Lukasiewicz (1858-1956) and 
Alfred Tarski (1901-1983) (for more details see Voskoglou, 
2019, Section 2). Max Black (1937) introduced the concept 
of vague set being a premonition of the Zadeh’s fuzzy set (FS) 
(Zadeh, 1965), which led to the development of the infinite-
valued in the interval [0, 1] fuzzy logic (FL) (Zadeh, 1973).   
     But, while Zadeh was trying to spread out the message of 
fuzziness, he received many tough critiques for his radical 
ideas from three different directions (Kosko, 1993).  The first 
direction came from many scientists asked for some practical 
applications. In fact, such applications started to appear in 
industry during the 1970’s, the first one being in the area of 
cement kiln control (Umbers & King, 1980). This is an 
operation demanding the control of a highly complex set of 
chemical interactions by dynamically managing 40-50 “rules 
of thumb”. This was followed by E. H. Mamdani’s (1975) 
work in the Queen Mary College of London, who designed 
the first fuzzy system for controlling a steam engine and later 
the operation of traffic lights. Another type of fuzzy inference 
systems was developed later in Japan by Takagi-Sugeno-
Kang (Sugeno, 1985). It is well known that nowadays FSs 
and FL have found many and important applications to 
almost all sectors of human activity. 

     The second direction is related to the probability theorists, 
who claimed that FL cannot do any more than probability 
does. Membership degrees, taking values in the same with 
probabilities interval [0, 1], are actually hidden probabilities, 
fuzziness is a kind of disguised randomness, and the multi-
valued logic is not a new idea. It took a long time to become 
universally understood, just recently, that fuzziness does not 
oppose probability, but actually supports and completes it by 
treating successfully the cases of the existing in the real world 
uncertainty which is caused by reasons different from 
randomness (Kosko, 1990). The expressions “John’s 
membership degree in the FS of clever people is 0.7” and 
“The probability of John to be clever is 0.7”, although they 
look similar, they actually have essentially different 
meanings. The former means that John is a rather clever 
person, whereas the latter means that John, according to the 
principle of the excluded middle, is either clever or not, but 
his outlines (heredity, academic studies, etc.) suggests that 
the probability to be clever is high (70%). 
     The third direction comes from bivalent logic. Many of its 
traditional supporters, based on a culture of centuries, argue 
that, since this logic works effectively in science, functions 
the computers and explains satisfactorily the phenomena of 
the real world, except perhaps those that happen in the 
boundaries, there is no reason to make things more 
complicated by introducing the unstable principles of a multi-
valued logic.  
     FL, however, aims exactly at smoothing the situation in 
the boundaries! Look, for example, at the graph of Fig. 1 
corresponding to the FS T of “tall people”. People with 
heights less than 1.50 m are considered of having 
membership degree 0 in T. The membership degree is 
continuously increasing for heights greater than 1.50m, 
taking its maximal value 1 for heights equal or greater than 
1.80 m. Therefore, the “fuzzy part” of the graph - which is 
conventionally represented in Fig. 1 by the straight line 
segment AC, but its exact form depends upon the way in 
which the membership function has been defined - lies in the 
area of the rectangle ABCD defined by the OX axis, its 
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parallel through the point E and the two perpendicular to it 
lines at the points A and B.   

 
Fig. 1. The fuzzy set of “tall people” 
 
      In fact, the way of perceiving a concept (e.g. “tall”) is 
different from person to person, depending on the “signals” 
that each one receives from the real world about it.  
Mathematically speaking, that means that the definition of the 
membership function of a FS is not unique, depending on the 
observer’s personal criteria. The only restriction is that this 
definition must be compatible to the common logic, because 
otherwise the corresponding FS does not give a reliable 
description of the corresponding real situation. On the 
contrary, bivalent logic defines a bound, e.g. 1.80 m, above 
which people are considered to be tall and under which are 
considered to be short. Consequently, one with height 1.79 m 
is considered to be short, whether another with height 1.81 m 
is tall! 
     There are also strong voices of anger against FL, without 
bothering to present any logical arguments about it. Those 
voices, characterize FL as the tool for making the science 
unstable, or more emphatically as the “cocaine of science”! 
Such voices, however, appear frequently in analogous cases 
of the history of science and must be simply ignored.   
     Zadeh realized that FSs are connected to words (adjectives 
and adverbs) of the natural language; e.g. the adjective “tall” 
indicates the FS of the tall people, since “how tall is 
everyone” is a matter of degree. A grammatical sentence may 
contain many adjectives and/or adverbs, therefore it 
correlates a number of FSs. A synthesis of grammatical 
sentences, i.e. a group of FSs related to each other, forms 
what we call a fuzzy system. A fuzzy system provides 
empirical advices, mnemonic rules and common logic in 
general. It is not only able to use its own knowledge to 
represent and explain the real world, but can also increase it 
with the help of the new data; in other words, it learns from 
the experience. This is actually the way in which humans 
think. Nowadays, a fuzzy system can control, for example, 
the function of an electric washing-machine or send signals 
for purchasing shares from the stock exchange, etc.  
     The target of the present paper is the study of the fuzzy 
control systems, which are the most important category of 
fuzzy systems. The rest of the paper is organized as follows: 
Section II studies the structure of the traditional control 
systems of bivalent logic. Section III is devoted to the 
theoretical study of fuzzy control, which is highly based on 
the fuzzy approximation theorem. The structure of a fuzzy 
control system is fully illustrated by the example of 
controlling a building’s central heating boiler presented in 
Section IV and the article closes with the general conclusions, 
which are stated in Section V. 

2. Control Systems 
The notion of a system has a very broad context in general. It 
can be defined as a set of interacting components forming an 
integrated whole. We distinguish among physical, social, 
economic, biological, abstract (mathematical, philosophical, 
etc.) systems and many others.  
     The study of a system is usually performed through the 
modelling process. A model is a simplified representation of 
the basic characteristics of a real system, which identifies and 
simplifies the relationships among those characteristics in a 
form amenable to analysis. Several kinds of models are used 
according to the form of the corresponding problem, their 
most common types being the mathematical and simulation 
models. In the former case mathematical symbols and 
methods are used for representing the system. In the latter 
case the system is represented by a sequence of logical orders, 
usually functioning with the help of computers (for more 
details see Taha 1967, Chapter 1). 
     A control system (CS) regulates the behaviour of other 
devices or systems by using a feedback controller. We 
distinguish between two main types of CSs, the open-loop 

and the closed-loop CSs. In the former case the action of the 
controller is independent of the process variable (PV) to be 
controlled. This is, for example, the case of a central heating 
boiler controlled by a timer switching on or off the boiler after 
a certain period of time, regardless the building’s temperature 
(which is the PV). In the latter case, on the contrary, the 
controller’s action depends on the PV and the desired value 
of it, which is usually referred as the set point (SP). More 
explicitly, the difference SP-VP, called the SP-VP error, is 
applied as a control signal on the purpose of equalizing the 
values of SP and VP. In case of the boiler analogy, for 
example, this is achieved with the help of a thermostat, 
which, working as a sensor, monitors the building’s 
temperature to ensure that the controller’s output maintains it 
close to the temperature set by the thermostat (SP).  The 
structure of a closed-loop CS is graphically represented in 
Fig. 2, retrieved from the Web. 
  

 
Fig. 2. Structure of a closed-loop control system 
 
       The operation of a controller is regulated by a set of IF-

THEN logical rules. A rule connects a process or event A to 
another process or event B. For example, IF the temperature 
of the building is lower than 180 C (A), then the thermostat 
sends a signal, which, with the help of one or more 
mechanical valves, turns on the boiler (B). On the contrary, if 
the building’s temperature exceeds 270 C (A), then the 
thermostat sends a signal to the controller to turn off the 
boiler (B). Knowledge, therefore, could be seen as a 
combination of such rules, an idea originated at least from the 
Aristotle’s time. 
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Fig. 3.  Centrifugal governor in a Boulton and Watt engine of 1788 
 
     CSs are used to achieve, through automatic operation, 
increased productivity, high quality products and improved 
performance of a device or another system. Control theory 
dates from 1868, when J. C. Maxwell described the 
theoretical basis for the operation of the governors (Fig. 3), 
i.e. mechanical devices for regulating the operation of 
industrial engines. The traditional CSs are described 
nowadays with mathematical models using one or more 
differential equations that define the CS’s response to its 
inputs. Such CSs, initiated by N. Minorsky in 1922, are 
usually referred as PID (proportional – integral – derivative) 

controllers. Although the main application of mathematical 
control theory is the design of CSs for industry (CSs 
engineering), other important applications can also be found 
in life sciences, computer engineering, sociology and 
operation research (portal.dnb.de, 2020).  
 
3. Fuzzy Control 
     In many cases the mathematical model of a classical 
controller may not exist, or may be too “expensive” in terms 
of computer processing power and memory. The classical 
expert systems of Artificial Intelligence (AI) (e.g. see 
Voskoglou & Salem, 2020), for example, work by using 100 
– 1000 bivalent IF-THEN rules. It has been estimated, 
however, that the human intelligence could be approached by 
a machine using at least 105 such rules!  In such cases, 
therefore, a system based on empirical rules could be more 
effective.  
      This was a good reason to introduce principles of FL for 
constructing “clever” CSs. It is of worth noting that, although 
in many cases genetic algorithms and neural networks can 
perform as well as FL, the latter has the advantage of 
expressing the solution of the problems in the natural 
language. In this way, the human experience can be used for 
designing the controller, which makes easier the 
mechanization of tasks that have been already performed 
successfully by humans.  FL needs also logical rules but, in 
contrast to bivalent logic, does not need too many rules. 
      A fuzzy control system (FCS) is a CS that analyzes the 
input values in terms of variables which take on continuous 
values in the interval [0, 1]. On the contrary the traditional 
CSs operate on the basis of the discrete values 0 (false) and 1 
(true) only. The structure of a FCS, which is graphically 
represented in Fig. 4, retrieved from the Web, is relatively 
simple and similar to the structure of a traditional CS (Fig. 2). 
 

 
 
Fig. 4. Structure of a fuzzy control system 
 
      The interest on FCSs sparked by the development of a 
system for accelerating, breaking and stopping the vehicles 
of the Sedai Subway, a rapid transit network in Japan. S. 
Yasunobu and S. Miyamoto of Hitachi provided in 1985 
simulations that demonstrated the feasibility of FCSs in that 
case. Since then, a wide range of FCSs was developed by 
Japanese engineers concerning vacuum cleaners, 
refrigerators, air conditions, autofocusing cameras, voice 
controlled helicopters, robots, etc. In 1988 Japan established 
the Laboratory of Intelligent Fuzzy Engineering (LIFE), a 
cooperative of 48 companies, on the purpose of pursuing 
applied fuzzy research. Development of FCSs is also 
proceeding in USA and Europe, though in a smaller scale 
than in Japan. NASA, the US Environmental Protection 
Agency, big firms as Boeing, General Motors, Chrysler, 
Whirpool, etc., have worked on FL for improved automatic 
transmissions, energy efficient electric motors and several 
other applications. 
       An important advantage of the FCSs with respect to the 
traditional CSs is that they do not need the existence of a 
model for studying the corresponding real world system. FCS 
design is an empirical approach, basically based on the trial-

and-error method characterized by repeated attempts, which 
are continued until success or until the subject stops trying 
(Athanassopoulos & Voskoglou, 2020, Section 3). The 
general process of designing a FCS involves the following 
steps: 

 Determine the system’s operational specifications, 
inputs and outputs. 

 Choose the FSs for the inputs and outputs. 
 Document the set of IF-THEN fuzzy rules. 
 Choose the suitable defuzzification method. 
 Run tests to validate the system’s behavior. 
 Complete document by adjusting details as required 

and release to production. 
        An IF-THEN fuzzy rule is of the form: If X is A, then Y 
is B, where A, B are FS on the crisp sets of the input X and 
the output Y respectively. For example: If the temperature 
(X) is very low (A), then the boiler (Y) works in full rate (B).  
      The operation of a FCS is based on the Fuzzy 

Approximation Theorem) (FAT) (Kosko, 1992).  Roughly 
speaking, the FAT theorem, named so because the 
abbreviation “FAT theorem“ sounds better than “FA 
theorem”, states that any system can always be “covered” or 
approximated by a fuzzy system with a finite number of IF-
THEN fuzzy rules and is geometrically represented in Fig. 5 
(Kosko, 1993).  

 
 
Fig. 5. The FAT theorem 
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      The existing in Fig. 5 curve represents the original system 
and each of the patches covering it corresponds to an IF-
THEN fuzzy rule. The covering fuzzy system is the set of all 
those fuzzy rules, i.e. the set of all patches.  The more 
uncertain an IF-THEN rule, the bigger the corresponding 
patch. If a rule is too accurate, then is not fuzzy and the 
corresponding patch degenerates to a point on the curve. 
More knowledge means more rules, i.e. more patches and 
better covering. The better the curve is covered by the 
patches, the cleverer the covering fuzzy system.  
    The design of a FCS that has been highlighted above will 
be fully illustrated by the example that follows in the next 
section. For more details about the theory and applications of 
Fuzzy Controllers the reader may look at Iqbal, 2012, 
Michels et al., 2006, Tanaka and Wang, 2001, Reznik, 1997, 
etc. 
 
 4. An Application 
4.1. Triangular Fuzzy Numbers   
      For the better understating of the present section the 
reader is assumed to be familiar with the basics of the theory 
of Fuzzy Numbers (FNs) and in particular of Triangular FNs 

(TFNs), being the simplest form of FNs (Kaufmann & Gupta, 
1991). Here it is simply recalled that a TFN A = (a, b, c), with 
a, b and c real numbers such that a<b<c, is a FS on the set R 
of real numbers with membership function  
 

 
      The graph of the TFN A = (a, b, c) is the triangle ABC of 
Fig. 6. It is straightforward to check that the center of gravity 
(COG) of this triangle, i.e. the intersection point G of its 

medians, has coordinates (x, y) = ( a+b+c
3

, 1
3

) (Voskoglou, 

2019, Section 5).  

 

Fig. 6. Graph and COG of the TFN (a, b, c)       

     According to the COG defuzzification technique 

(Voskoglou, 2019, Section 4 ) the x-coordinate of G can 

be used as a ranking function R for defufuzzifying the 

TFNs. Therefore, we can write 

R(A) = a+b+c
3

      (1) 

      There are several other defuzzification approaches in use, 
the most commonly used being the ‘height” method, which 
takes the value of the biggest contributor (greatest output 
value). 
  
4.2. Fuzzy Control of a Central Heating Boiler  
      Reconsider the case of controlling a building’s central 
heating boiler, where the input X is the building’s 
temperature in degrees of Celsius and the output Y is the rate 
of the boiler’s operation expressed in a climax from 0 to 100. 
      Without loss of generality and for reasons of simplicity 
let us consider only three FSs on X, namely A1 = low 
temperature (≤180 C), A2 = normal temperature (between 150 

C and 250 C) and A3 = high temperature (>220 C).  Assume 
also that the corresponding FSs on Y are B1 = high rate of the 
boiler’s operation (≥70), B2 = low rate of the boiler’s 
operation (between 70 and 20) and B3 = boiler’s turn off (rate 
between 30 and 0). 
      The simplest way of representing geometrically the FSs 
defined above is by using triangles (TFNs), although one 
could use trapezoids (trapezoidal FNs) as well, or any other 
figure representing the membership functions of the defined 
FSs. Using triangles, the Ai’s are represented on the 
coordinate system XOY and the Bi’s on the coordinate 
system X΄Ο΄Υ΄ of Fig. 7. The triangles representing the FSs 
A1 and A2 are not complete, because we could have 
temperatures lower than 00 C or higher than 270 C. Those 
triangles can, however, be always completed in case of 
temperatures being outside the bounds of Fig. 7.  
 

 
Fig. 7.  The fuzzy control system of the boiler 
 
      In Fig. 7, the perpendicular lines to the OX and O’X’ axes 
from the vertices of the triangles Ai and Bi respectively lying 
on those axes define the rectangles Ai x Bi, i=1, 2, 3. In this 
way the system obtains the required FAT, with the rectangles 
being the patches of the following fuzzy rules: 

 A1 x B1: IF the building’s temperature is low, THEN 
the boiler operates in full rate.  
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 A2 x B2: IF the building’s temperature is normal, 
THEN the boiler operates in low rate.   

 A3 x B3: IF the building’s temperature is high, 
THEN the boiler turns off. 

      Those three patches cover a curve which represents the 
traditional control system of the boiler. That curve starts at 
the top of the patches on the left and ends at the bottom on 
the right. In case of a dynamic system changing by the time, 
the corresponding curve is moving. However, if the curve’s 
movement is not too fast, the patches can be extended or 
moved in order to cover always the curve. In other words a 
fuzzy system has usually the ability to cover or approximate 
an existing dynamic system. 
      The boiler, however does not “understand” the fuzzy 
rules. In order to respond one must give to it a number 
instead, representing the rate of its operation. This is 
succeeded by defuzzifying the corresponding FSs. Assume, 
for example, that the building’s temperature is 190 C. This 
temperature has membership degrees zero in the FSs A1 and 
A3 on X and nonzero in A2. This means that the fuzzy rule A2 
x B2 will be fully activated (100%). Since the triangle B2 
represents the TFN B2 (20, 45, 70), using the COG 
defuzzification technique one finds by equation (1) that 
R(B2)=45, i.e. the boiler receives the order to operate in a low 
rate.  
      Assume now that the building’s temperature drops to 160 

C, which has membership degrees zero in A3 and nonzero in 
A1 and A2 (Fig. 7). In this case, therefore, both the rules A2 x 
B2 and A1 x B1 will be activated. In Fig. 8, BAC and HOZ 
correspond to the triangles A2 and A1 of Fig. 7 respectively, 
while the point E corresponds to the temperature of 160 C. 

 
Fig. 8. The triangles A1 and A2 (inputs) of Fig. 7 
 
      Applying Thales’ theorem in the triangle ALB one finds 
that AB AL=

DB KL
 and BA BL 5=

BD BE 1
 , which gives that KL=

1 1AL= DE
5 5

 . Therefore, (DEB)=
1

10
.  We also have that 

(BAC)=5  and (ADEC)=(BAC)-(DEB)= 5-
1

10
= 

49
10

 , 

which gives that (ADEC)
(ABC)

= 49
50

=0.98 . Therefore, the input 

160 C belongs by 98% to the FS A2, i.e. the fuzzy rule A2 x 
B2 will be activated by 98%. As a result, the corresponding 

triangle B2 in the output must be reduced to the 0.98 of its 
height (Fig. 9). 
Also, in the triangle HOZ of Fig. 8 we have that HO HZ=

IO TZ
 

and ZH ZO 18=
ZT ZE 2

 , which gives that IO= 1
9

=TE. Then 

(TEZ)= 1
9

, (HOZ)=9 and (TEZ) 1 0.012
(HOZ) 81

 . Therefore the 

fuzzy rule A1 x B1 will be activated by 1.2%, which means 
that the corresponding triangle B1 in the output must be 
reduced to the 0.12 of its height (Fig. 9). 

 
Fig. 9. The reduced triangles B1’ and B2’ (outputs) from Fig. 7 
 
      Let F1 and F2 be in Fig. 9 the COGs of the triangles B1’ 
and B2’ with x-coordinates x1=80 and x2=45 respectively. 
Then the x-coordinate of the COG of the whole area defined 
by the two triangles, in which their common part is included 
twice (since it belongs to both outputs), is calculated by the 
equation 

x = 
1
S

(x1S1+x2S2)     (2)  

      In equation (2) Si denotes the area of the triangle Bi’, i=1, 
2 and S= S1+ S2 (system of the COGs F1 and F2; e.g. see 
Wikipedia, 2014).  But S1=(0.12 x 40):2=2.4, S2=(0.98 x 
50):2=24.5 and replacing those values to (2) one finds that 
x≈48. Therefore, the rate of the boiler’s operation increases 
and the temperature rises up again. 
      The process described above is performed by a fuzzy 
chip, which, receives a number from the input, compares it to 
all the input’s FSs, provides output FSs and turns them to a 
number. Those steps are repeated continuously in millions of 
flips per second. That process is usually referred as Fuzzy 

Associative Memory (FAM). Note that computers have a 
direct memory, since they save an acquired information in an 
address - i.e. a set of digital characters determining a place in 
their memory – and, whenever is needed, they search for this 
information in that particular address. On the contrary, FAM 
activates the whole memory of the FCS in a way analogous 
to what humans do when they search all their past memory in 
order to recognize a familiar person among the crowd. Thus, 
FAM provides a reliable model of the way that humans think 
and decide.  
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5. Conclusions 
      The discussion performed in this paper leads to the 
following general conclusions: 
 FS theory and FL which is based on this theory, initiated 

by Zadeh approximately 50 years ago, although they 
have initially received tough critiques from several 
directions, they have enabled the scientists to model 
under conditions of imprecision and/or vagueness. FL 
has found nowadays many and important applications to 
almost all sectors of human activity, becoming a 
complement and support of probability theory, which is 
suitable for modelling only situations of uncertainty 
which are due to randomness. 

 The traditional CSs are used to achieve, through 
automatic operation, increased productivity, high quality 
products and improved performance of a device 
or another system in terms of a set of bivalent IF – THEN 
rules. A model is needed in order to describe the 
operation of a traditional CS. The operation of the PID 
controllers, initiated by Minorsky in 1922, can be 
described by one or more differential equations that 
define the CS’s response to its outputs. 

 The operation of a FCS is based on the FAT theorem, 
according to which a system can be “covered” or 
approximated by a fuzzy system. An advantage of FCs 
with respect to the traditional CSs is that they do not need 
a model to describe their operation. On the contrary, they 
do need IF – THEN fuzzy rules, which, however, could 
not be too many as in a traditional controller. A FCS 
operates on the basis of its FAM, which simulates the 
way that humans think and decide. Starting from Japan 
during the 1980’s, fuzzy controllers have found many 
industrial applications, and not only, while the research 
about them is nowadays in a phase of continuous 
development.  

 The present work provides a basic framework, which is 
necessary for those willing to study deeper the operation 
of the fuzzy controllers and perhaps to apply its 
theoretical principles for the design of new “clever” 
constructions (industrial engines, home devices, etc.), as 
well as for the development of new “clever” approaches 
in automation, computer engineering, operation 
research, life sciences, sociology and in several other 
sectors of the human activity. In the effort of presenting 
the results of our study in the simplest possible way, so 
that they can be understood even by a non-expert, we 
chose a geometrical approach based on an example with 
a building’s central heating controller. 
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